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1. WEIERSTRASS

This is a story about Karl Wilhelm Theodor Weierstrass (Weierstra? ),
what he contributed to approximation theory (and why), and some of the
consequences thereof. We start this story by relating a little about the man
and his life.

Karl Wilhelm Theodor Weierstrass was born on October 31, 1815, at
Ostenfelde near Mu� nster into a liberal (in the political sense) Catholic family.
He was the eldest of four children, none of whom married. Weierstrass was
a very successful gymnasium student and was subsequently sent by his
father to the University of Bonn to study commerce and law. His father
seems to have had in mind a government post for his son. However neither
commerce nor law was to his liking, and he ``wasted'' four years there, not
graduating. Beer and fencing seem to have been fairly high on his priority
list at the time. The young Weierstrass returned home, and after a period
of ``rest'', was sent to the Academy at Mu� nster where he obtained a teacher's
certificate. At the Academy he fortuitously came under the tutelage and
personal guidance of C. Gudermann who was professor of mathematics at
Mu� nster and whose basic mathematical love and interest was the subject of
elliptic functions and power series. This interest he was successful in
conveying to Weierstrass. In 1841, Weierstrass received his teacher's
certificate, and then spent the next 13 years as a teacher (for six years he
was a teacher in a pregymnasium in the town of Deutsch-Krone (West
Prussia), then for another seven years in a gymnasium in Braunsberg (East
Prussia)). During this period he continued learning mathematics, mainly
by studying the work of Abel. He also published some mathematical
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papers. However these appeared in school journals and were quite naturally
not discovered at that time by any who could understand or appreciate
them. (Weierstrass' collected works contain seven papers from before 1854,
the first of which On the development of modular functions (49 pp.) was
written in 1840.)

In 1854, Weierstrass published the paper On the theory of Abelian func-
tions in Crelle's Journal fu� r die Reine und Angewandte Mathematik (the first
mathematical research journal, founded in 1826, and now referred to
without Crelle's name in the formal title). It created a sensation within the
mathematical community. Here was a 39 year old school teacher whom no
one within the mathematical community had heard of. And he had written
a masterpiece, not only in its depth, but also in its mastery of an area.
Recognition was immediate. He was given a doctorate by the University of
Ko� nigsberg, promoted by the Ministry of Education (of Prussia), and
given a year's leave with pay. Eventually a temporary professorship was
arranged for him at Berlin's Royal Polytechnic School (forerunner of the
Berlin Technische Universita� t). Shortly thereafter he moved to the University
of Berlin as an Associate Professor and was made a member of the Berlin
Academy. From 1864, he was Professor of Mathematics at the University
of Berlin.

There is a well-known much reproduced photograph of Weierstrass (see,
for example, [60]) and in it he looks both old and tired. This is probably
an unfair assessment. Weierstrass came to professional mathematics rather
late in life. (In fact Weierstrass is probably the counterexample, par
excellence, to the much overrated truism that mathematicians lose much of
their creativity by the time they reach 40.) He was also never a healthy
man from about his mid-40's. Nonetheless Weierstrass was not only very
much admired and respected, but also liked. He was known as a popular,
genial and approachable lecturer (a rarity at the time). In fact he was
considered as one of the very best teachers of advanced students. As a
consequence, but not least because he was undoubtedly one of the leading
analysts of the nineteenth century, he had many formal and informal
students (three of whom, Mittag�Leffler, Runge and Lerch, appear later in
these pages).

Weierstrass did not publish much, and was in addition slow to publish.
Nevertheless his collected works (Mathematische Werke) contain seven
volumes of well over 2500 pages. However much of this Mathematische
Werke is taken up with a great deal of previously unpublished lecture notes
and similarly unpublished talks. Due to the nature of the material
Weierstrass himself initially supervised the preparation of these volumes,
and two volumes in fact appeared before his death in 1897. For further
details on the life of Weierstrass see, for example, [4, 8, 16, 60] and
references therein.
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The areas of mathematics in which Weierstrass worked and contributed
include elliptic functions, Abelian functions, the calculus of variations, the
theory of analytic functions, the theory of periodic functions, bilinear and
quadratic forms, differential equations and real variable function theory.
Calculus students know Weierstrass' name because of the Bolzano�Weierstrass
theorem, the two theorems of Weierstrass that state that every continuous
real-valued function on a closed finite interval is bounded and attains its
maximum and minimum, and the Weierstrass M-test for convergence of
infinite series of functions. (What the students generally do not know is
that Weierstrass also formulated the precise (=, $) definition of continuity at
a point.)

It has been said that two main themes stand out in Weierstrass' work.
The first is called the arithmetization of analysis. This was a program to
separate the calculus from geometry and to provide it with a proper solid
analytic foundation. Providing a logical basis for the real numbers, for
functions and for calculus was a necessary stage in the development of
analysis. Weierstrass was one of the leaders of this movement in his lectures
and in his papers. He not only brought a new standard of rigour to his own
mathematics, but attempted to do the same to much of mathematical analysis.

The second theme which is everpresent in Weierstrass' work is that of power
series (and function series). Weierstrass is said to have stated that his own
work in analysis was ``nothing but power series''; see Bell [4, p. 462].

It is in this context that we should consider Weierstrass' contributions to
approximation theory. In this paper we mainly consider two of Weierstrass'
results. The first from 1872, see [105], is Weierstrass' example of a con-
tinuous nowhere differentiable function. It is a generally accepted fact that
this was known and lectured upon by Weierstrass in 1861. Using function
series (in this case cosines) Weierstrass constructs a function that is con-
tinuous but not in the least smooth. The second result, which appeared in
1885 in [107] is in a sense its converse. Every continuous function on R
is a limit not only of infinitely differentiable or even analytic functions, but
in fact of polynomials. Furthermore, this limit is uniform if we restrict the
approximation to any finite interval. Thus the set of continuous functions
contains very, very non-smooth functions, but they can each be
approximated arbitrarily well by the ultimate in smooth functions. It is
these two papers, and these two facts, which very much lie at the heart of
approximation theory.

2. CONTINUOUS NOWHERE DIFFERENTIABLE FUNCTIONS

I turn away with fear and horror from the lamentable plague of continuous
functions which do not have derivatives...

��Hermite, letter to Stieltjes dated 20 May, 1893

3WEIERSTRASS AND APPROXIMATION THEORY



The history of the proof of the existence of a continuous nowhere
differentiable function is neither plain nor clear. Bolzano seems to have
been the first to have constructed a function which is continuous but
nowhere differentiable. Who was Bolzano? Bernard Placidus Johann
Nepomuk Bolzano (1781�1848) was born in Prague (his father was from
Italy). He was a priest and a scholar, and taught for some years at the
University of Prague. However he was subsequently prohibited from teach-
ing (and even placed for a while under house arrest) for expressing views
that were not in the least acceptable to the authorities. His mathematical
work went almost unnoticed and he never received the recognition he
deserved until well after his death. Of course since some of it was unpublished
this was not totally unwarranted. Bolzano was a contemporary of Cauchy,
both chronologically and mathematically. He gave similar definitions of limits,
derivatives, continuity, and convergence (see Grabiner [36]). He also
made significant contributions to logic and set theory (see Bolzano [12]).
Bolzano invented, sometime in the 1830's, it seems, a process for the con-
struction of a continuous but not differentiable function. In fact, Bolzano
only claimed non-existence of the derivative at a dense set of points (and
such functions are very easily constructed). Nonetheless the derivative
exists nowhere. This example of Bolzano was reported on by J. Masek in
the early 1920's and Bolzano's manuscript containing this example was
finally printed in 1930; see Kowalewski [49].

It seems to be an accepted fact (see, for example, [16, 60]) that Weierstrass
gave an example of a continuous nowhere differentiable function in classroom
lectures in 1861 (at the very latest). In Volume 2 of his Mathematische Werke
(published in 1895) there appears the paper [105] wherein Weierstrass proves
that the function

f (x)= :
�

n=0

bn cos(anx?)

is continuous, but it is nowhere differentiable, if b # (0, 1), a is an odd
integer, and ab>1+(3?�2). Two facts should be stated regarding this
paper. First, the paper is not a reprint of a previously published paper, but
a record of a talk given to the Berlin Academy of Sciences on July 18, 1872,
and it is unclear as to when exactly this ``paper'' was first formally written.
(It finally appeared in the above Volume 2 which was published under
Weierstrass' editorial supervision.) Second, in this paper Weierstrass
himself specifically states that Riemann was the first to definitely assert
(already in 1861 at the latest) that the infinite series

:
�

n=1

sin(n2x)
n2 ,

4 ALLAN PINKUS



which is manifestly continuous, is not differentiable. Unfortunately it is
far from evident that Riemann asserted or proved this fact. (See Ullrich
[97] and Butzer, Stark [21] for a fascinating discussion of this whole
question. Other sources are the many references therein, especially [69].)
Work of Hardy [38] and Gerver [34, 35] eventually established the fact
that this function is nondifferentiable at all but rational multiples of ?
where the rational number, in reduced form, is p�q with both p and q odd
integers. At such points the derivative is &1�2. Again priority is here an
issue; see Butzer, Stark [22, footnote on p. 57] and Ullrich [97, p. 246].

It is worth mentioning that there is a much simpler example of a con-
tinuous nowhere differentiable function. This example of Takagi [94] (see
Yamaguti, Hata, Kigami [110, p. 11]) is given by

f (x)= :
�

n=0

�(2nx)
2n ,

where �(x)=dist(x, Z). This example and variants thereof have often been
rediscovered. When 2 is replaced by 10, this is generally referenced to
van der Waerden [103] (see also Hildebrandt [39] and de Rham [77]
where in ``simplifying'' van der Waerden's example they rediscovered the
Takagi example). The proof of the nondifferentiability of this function is
considered sufficiently elementary to be presented in the calculus text of
Spivak [86], albeit with 10 rather than 2.

The discovery of continuous nowhere differentiable functions shocked
the mathematical community. It also accentuated the need for analytic
rigour in mathematics. Continuous nowhere differentiable functions may
seem to some as pathological. One hundred years ago this was certainly an
opinion expressed by many. (Note the quote at the beginning of this
section.) Nonetheless, yesterday's pathologies are at times central in today's
``cutting edge'' theories and technologies. The existence of continuous
nowhere differentiable functions is crucial to our proper understanding of
mathematical analysis. Moreover, without nowhere differentiable functions
we would not have Brownian motion, fractals, chaos, or wavelets, to mention
only a few of the more popular modern theories (see e.g., [41, 63, 110] and
references therein).

Continuous nowhere differentiable functions are also ubiquitous, in the
sense of category. In the space of continuous functions on [0, 1] (with the
uniform norm), the set of functions that at some point in [0, 1] have a
one-sided derivative is of first category. That is, its complement is exceedingly
large. This is one of the elegant applications of the Baire category theorem.
This result, due to Mazurkiewicz [61] and generalized by Banach [3] may
be found, for example, in Kuratowski [51] and in Oxtoby [71].
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To return to Weierstrass' example, the first published proof of the non-
differentiability was given by du Bois-Reymond [10]. As du Bois-Reymond
explicitly states, the proof of this is due to Weierstrass, and was given with
his consent. It is word for word (except, it seems, for one misprint)
Weierstrass' proof which ``appears'' in Volume 2 of his Mathematische
Werke as [105].

What Weierstrass proved for the above f is that it has no derivative at
every point and that

lim
h � 0

f (x+h)& f (x)
h

does not exist, even in the generalized sense, i.e., as � or &�. The major
generalization of this result is due to Hardy [38]. He showed that for every
b # (0, 1) and a>1, the above function has no finite derivative if (and only
if) ab�1. Hardy also proved additional facts concerning this function and
the analogous

g(x)= :
�

n=0

bn sin(anx?)

which exhibits much the same behaviour.
Let us now present Weierstrass' proof of his result. The fact that f is

continuous follows immediately from the condition b # (0, 1) and

|bn cos(anx?)|�bn,

by what we now call the Weierstrass M-test for convergence.
The proof of the nondifferentiability needs a bit more work. Fix x # R.

For each positive integer m, let :m be an integer closest to amx, i.e., :m # Z,
and

xm=amx&:m

satisfies |xm |�1�2. Define the two sequences [ ym] and [zm] via

ym=
:m&1

am ; zm=
:m+1

am .

Then

x& ym=
1+xm

am ; zm&x=
1&xm

am ,
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and, therefore,

ym<x<zm

and

lim
m � �

ym= lim
m � �

zm=x.

Let us now consider

f (x)& f ( ym)
x& ym

= :
�

n=0

bn cos(anx?)&cos(anym?)
x& ym

= :
m&1

n=0

bn cos(anx?)&cos(anym?)
x& ym

+ :
�

n=0

bn+m cos(an+mx?)&cos(an+mym?)
x& ym

.

We estimate the first sum as follows. For n # [0, 1, ..., m&1], it follows
from the mean-value theorem that

cos(anx?)&cos(anym?)
x& ym

=&an? sin cn ,

for some cn # (anym?, anx?). Thus

} :
m&1

n=0

bn cos(anx?)&cos(anym?)
x& ym }� :

m&1

n=0

(ab)n ? |sin cn |

�? :
m&1

n=0

(ab)n=?
(ab)m&1

ab&1
�?

(ab)m

ab&1
.

To estimate the second sum, note that since a is an odd integer and :m an
integer, we have

cos(an+mym?)=cos(an?(:m&1))=(&1):m&1.

In addition,

x& ym=(1+xm)�am.
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Thus

:
�

n=0

bn+m cos(an+mx?)&cos(an+mym ?)
x& ym

=(&1):m (ab)m :
�

n=0

bn (&1):m cos(an+mx?)+1
xm+1

.

Now

(&1):m cos(an+mx?)+1�0

for all n=1, 2, ..., while for n=0

(&1):m cos(amx?)+1=(&1):m cos((:m+xm) ?)+1=cos(xm?)+1�1

since |xm?|�?�2. In addition,

1
2�xm+1� 3

2 .

Thus

:
�

n=0

bn (&1):m cos(an+mx?)+1
xm+1

�
cos(xm?)+1

xm+1
�

2
3

.

This implies that

(&1):m :
�

n=0

bn+m cos(an+mx?)&cos(an+mym ?)
x& ym

�(&1):m (ab)m 2
3

.

From the above calculations we obtain

f (x)& f ( ym)
x& ym

==m ?
(ab)m

ab&1
+'m(&1):m (ab)m 2

3

for some =m , 'm satisfying |=m |�1 and 'm>1. We can rewrite the right-
hand-side as

'm(&1):m (ab)m _=m

'm

(&1):m?
ab&1

+
2
3& ,

where 'm>1 and |=m �'m |<1. The condition ab>1+3?�2 is equivalent to

2
3

>
?

ab&1
.
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Thus for such a, b we have

lim
m � �

(&1):m
f (x)& f ( ym)

x& ym
=�.

This suffices to prove that f has no derivative at x.
An analogous argument shows that

lim
m � �

(&1):m+1 f (zm)& f (x)
zm&x

=�.

Thus

lim
h � 0

f (x+h)& f (x)
h

does not exist even in a generalized sense.

Years later in 1880 Weierstrass himself used this result, presenting

g(z)= :
�

n=0

bnza n

as a function analytic in |z|<1, continuous in |z|�1, but whose real
part is nowhere differentiable on |z|=1. Thus g is not continuable as an
analytic function anywhere beyond |z|<1 (see Weierstrass [106] and Hille
[40, p. 91]).

3. THE FUNDAMENTAL THEOREM OF APPROXIMATION
THEORY

The basis of the theory of approximation of functions of a real variable is a
theorem discovered by Weierstrass which is of great importance in the develop-
ment of the whole of mathematical analysis.

��A. F. Timan [95, p. 1]

In this section we review the contents of Weierstrass [107] and its
variants. We first fix some notation. C(R) will denote the class of con-
tinuous real-valued functions on all of R, C[a, b], &�<a<b<�, the
class of continuous real-valued functions on the closed interval [a, b], and
C� [a, b] the class of functions in C[a, b] satisfying f (a)= f (b). (C� [a, b]
may, and sometimes should, be considered as the restriction to [a, b] of
functions in C(R) which are (b&a)-periodic.)

The paper stating and proving what we in approximation theory call
``the'' Weierstrass theorems, i.e., those that prove the density of algebraic
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polynomials in the space C[a, b] (for every &�<a<b<�), and trigono-
metric polynomials in C� [0, 2?], is Weierstrass [107]. It was published in
1885 when Weierstrass was 70 years old! This is one paper, but it appeared
in two parts. It seems that the significance of the paper was immediately
appreciated, as the papers appeared in translation (in French) one year
later in Weierstrass [108]. Again it was published in two parts under the
same title (but in different issues, which is somewhat confusing). The paper
was ``reprinted'' in Weierstrass' collected works (Mathematische Werke). It
appears in Volume 3 which originally appeared in 1903, although parts of
Volume 3 including, it seems, this paper, were edited by Weierstrass himself
a few years previously. Here the two parts do appear as one paper. In addi-
tion, some changes were made. A half page was added at the beginning, ten
pages of material were appended to the end of the paper, and some other
minor changes were made. We will return to these additions later.

Weierstrass was very interested in complex function theory and in
representing functions by power series. The results he obtained in this
paper should definitely be viewed from that perspective. In fact the title of
this paper emphasizes this viewpoint. The paper is titled On the possibility
of giving an analytic representation to an arbitrary function of a real
variable. In this section we review what Weierstrass did in this paper.

Weierstrass starts his original paper with the statement that if f is
continuous and bounded on all of R then, as is known,

lim
k � 0+

1

k - ? |
�

&�
f (u) e&((u&x)�k) 2 du= f (x).

He then immediately notes that this may be generalized to any kernel �
that is continuous, nonnegative, integrable and even on R. For such � he
sets

F(x, k)=
1

2k| |
�

&�
f (u) � \u&x

k + du,

where

|=|
�

0
�(x) dx,

and proves that

lim
k � 0+

F(x, k)= f (x)

for each x. He not only proves pointwise convergence, but also uniform
convergence on any finite interval. The proof is standard. We will not repeat
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it here. Weierstrass also notes that there are entire �, as above, for which
F( } , k) is entire for every k>0. He explicitly states that �(x)=e&x 2

is an
example thereof. The consequence of the above is the following.

Theorem A. Let f be continuous and bounded on R. Then there exists a
sequence of entire functions F(x, k) (as functions of x for each positive k)
such that for each x

lim
k � 0+

F(x, k)= f (x).

Weierstrass seems very much taken with this result that every bounded
continuous function on R is a pointwise limit of entire functions. In fact he
prefaces Theorem A with the statement that this theorem ``strikes me as
remarkable and fruitful''. For unknown reasons this sentence, and only this
sentence, was deleted from the paper when it was reprinted in Weierstrass'
Mathematische Werke.

As mentioned, on any finite interval, one may obtain uniform convergence.
Furthermore, since F( } , k) is entire, the truncated power series of F( } , k)
uniformly converges to F( } , k) on any finite interval. Each of the above
statements is easily proved. As such the following is a consequence of
Theorem A and a power series argument.

Theorem B. Let f be continuous and bounded on R. Given a finite
interval [a, b] and an =>0, there exists an algebraic polynomial p for which

| f (x)& p(x)|<=

for all x # [a, b].

Throughout the first part of Weierstrass [107] and for much of the
second part, Weierstrass is concerned with functions defined on all of R.
However later in the second part he does note that given any f # C[a, b],
&�<a<b<�, we can define f to equal f (a) on (&�, a), and to equal
f (b) on (b, �). We can then apply the above Theorem B to obtain what
is technically never explicitly stated, but nonetheless very implicitly stated,
and what is today considered as the main result of this paper.

Fundamental theorem of approximation theory. Let f # C[a, b],
&�<a<b<�. Given =>0, there exists an algebraic polynomial p for
which

| f (x)& p(x)|<=

for all x # [a, b].

11WEIERSTRASS AND APPROXIMATION THEORY



Returning to Weierstrass [107], and bounded f # C(R), Weierstrass
considers two sequences of positive values [cn] and [=n], for which
limn � � cn=�, and ��

n=1 =n<�. From Theorem B it follows that for f as
above there exists a polynomial pn such that

| f (x)& pn(x)|<=n

on [&cn , cn].
Set q0= p1 and qm= pm+1& pm , m=1, 2, ... . Then

:
n

m=0

qm(x)= pn+1(x)

and, thus, in a pointwise sense

f (x)= :
�

m=0

qm(x). (3.1)

Furthermore, let [a, b] be a finite interval. Then for all m sufficiently large

| f (x)& pm(x)|<=m

for all x # [a, b], implying also

|qm(x)|<=m+=m+1

for all x # [a, b]. Thus for some M

:
�

m=M

|qm(x)|<2 :
�

m=M

=m

for all x # [a, b] and the series

:
�

m=0

qm(x)

therefore converges absolutely and uniformly to f on [a, b]. This Weierstrass
states as Theorem C. That is,

Theorem C. Let f be continuous and bounded on R. Then f may be
represented, in many ways, by an infinite series of polynomials. This series
converges absolutely for every value of x, and uniformly in every finite
interval.

Weierstrass and subsequent authors would often phrase or rephrase
these approximation or density results (in this case Theorem B) in terms of
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infinite series. It was only many years later that this equivalent form went
out of fashion. In fact such a phrasing was at the time significant. One
should also recall that it was only a few years earlier that du Bois-Reymond
had constructed a continuous function whose Fourier series diverged at a
point; see [11]. Weierstrass' theorem was considered to be by many, and
by Weierstrass himself, as a ``representation theorem''. The theorem was
seen as a means of reconciling the ``analytic'' and ``synthetic'' viewpoints
which had estranged late 19th century mathematics; see Gray [37]. Much
of the remaining part of Weierstrass [107] is concerned with the construc-
tion (in some sense) of a good polynomial approximant or a good
representation for f (as in (3.1)). Weierstrass was well aware that he could
not possibly construct a good power series representation for f, but he did
find, in some sense, a reasonable expansion of f in terms of Legendre poly-
nomials.

In the latter part of [107], Weierstrass proves the density of trigonometric
polynomials in C� [0, 2?]. His proof is interesting and proceeds via complex
function theory.

Let f # C� [0, 2?]. Let � be an entire function, that is nonnegative,
integrable and even on R and has the following property. The functions

F(z, k)=
1

2k| |
�

&�
f (u) � \u&z

k + du,

where

|=|
�

0
�(x) dx,

are entire for each k>0 (as a function of z # C) and satisfy

lim
k � 0+

F(x, k)= f (x)

uniformly on [0, 2?]. Weierstrass notes that such functions � exist, e.g.,
�(u)=e&u2

.
Since f is 2?-periodic so is F, i.e.,

F(z+2?, k)=F(z, k)

for all z # C and k>0. For each fixed k>0, set

G(z, k)=F \log z
i

, k+ .

In general, since log z is a multiple-valued function, G would also be a
multiple-valued function. However from the 2?-periodicity of F, it follows
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that G is single-valued and thus it is an analytic function on C"[0]. Conse-
quently, G has a Laurent series expansion of the form

G(z, k)= :
�

n=&�

cn, kzn

which converges absolutely and uniformly to G on every domain bounded
away from 0 and �. We will consider this expansion on the unit circle
|z|=1. Setting z=eix, it follows that

F(x, k)= :
�

n=&�

cn, k einx,

where the series converges absolutely and uniformly to F(x, k) for all real x.
(In fact, it may be shown that if �(u)=e&u2

, then cn, k=cne&n2k2 �4, where the
[cn] are the Fourier coefficients of f.) In other words, Weierstrass has given
a proof of the fact that for F(x, k) 2?-periodic and entire, its Fourier series
converges absolutely and uniformly to F(x, k) on R. We now truncate this
series to get an arbitrarily good approximant to F(x, k) which itself, by a
suitable choice of k, was an arbitrary good approximant to f. The trun-
cated series is a trigonometric polynomial. This completes Weierstrass'
proof, the result of which we formally state.

Second Fundamental Theorem of Approximation Theory. Let
f # C� [0, 2?]. Given =>0, there exists a trigonometric polynomial t for which

| f (x)&t(x)|<=

for all x # [0, 2?].

As was stated at the beginning of this section, when [107] was reprinted
in Weierstrass' Mathematische Werke there were two notable additions.
These are of interest and worth mentioning. We recall that while this
reprint appeared in 1903 there is reason to assume that Weierstrass himself
edited this paper.

The first addition was a short (half page) ``introduction.'' We quote it (in
meaning if not verbatim).

The main result of this paper, restricted to the one variable case, can be
summarized as follows:

Let f # C(R). Then there exists a sequence f1 , f2 , ... of entire functions for which

f (x)= :

�

i=1

fi (x)

for each x # R. In addition the convergence of the above sum is uniform on
every finite interval.
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We can assume that this is the emphasis which Weierstrass wished to
give his paper. It is a repeat of Theorem C (although the boundedness con-
dition on f seems to have been overlooked) and curiously without mention
of the fact that the fi may be assumed to be polynomials.

The second addition is 10 pages appended to the end of the paper. In
these 10 pages Weierstrass shows how to extend the results of this paper
(or, to be more precise, the results concerning algebraic polynomials) to
approximating continuous functions of several variables. He does this by
setting

F(x1 , ..., xn , k)=
1

2nkn|n |
�

&�
} } } |

�

&�
f (u1 , ..., un)

_� \u1&x1

k + } } } � \un&xn

k + du1 } } } dun

and then essentially mimicking the proofs of Theorems A and B. However
Picard [72] published already in 1891 an alternative proof of Weierstrass'
theorems and showed how to extend the results to functions of several
variables. As such, Weierstrass' priority to this result is somewhat in question.

4. EARLY ADDITIONAL PROOFS OF THE FUNDAMENTAL
THEOREM

If it were necessary to designate one theorem in approximation theory as being
of greater significance than any other, that one would probably be the Weierstrass
approximation theorem. The influence of this theorem has been felt not only in the
obvious way through its use as a tool in analysis but also in the more far-reaching
way of enticing mathematicians into generalizing it or providing it with alternative
proofs.

��E. W. Cheney [25, p. 190]

In this section we present various alternative proofs of Weierstrass'
theorems on the density of algebraic and trigonometric polynomials on
finite intervals in R. It is our belief that the echo of these proofs have an
abiding value. Some of the papers we will quote contain additional results
or emphasize other points of view. We ignore such digressions. The proofs
we present divide roughly into three groups. The first group contains
proofs that, in one form or another, are based on singular integrals. The
proofs of Weierstrass, Picard, Feje� r, Landau, and de la Valle� e Poussin
belong here. The second group of proofs is based on the idea of approximating
a particular function. In this group we find the proofs of Runge�Phragme� n,
Lebesgue, Mittag-Leffler, and Lerch. Finally, there is the third group that
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contain the proofs which do not quite belong to either of the above groups.
Here we find proofs due to Lerch, Volterra and Bernstein. These are what
we term the ``early proofs''. They all appeared prior to 1913. Note the
pantheon of names which were drawn to this theorem. The main focus of
these proofs are the Weierstrass theorems themselves rather than any
far-reaching generalizations thereof. There are later proofs coming from
different and broader formulations. We discuss some of these in Section 5.
For historical consistency we have chosen to present here these proofs in
more or less chronological order. This lengthens the paper, but we hope the
advantages of this approach offset this deficiency.

We start by formally stating certain facts which will be obvious to most
readers, but perhaps not to everyone. The first two simple statements have
to do with changes of variables, and are stated without proof.

Proposition 1. Algebraic polynomials are dense in C[a, b] iff they are
dense in C[0, 1].

Analogously we have the less used:

Proposition 2. The trigonometric polynomials

span[1, sin x, cos x, sin 2x, cos 2x, ...]

are dense in C� [0, 2?] iff

span {1, sin
2?x

b&a
, cos

2?x
b&a

, sin 2
2?x

b&a
, cos 2

2?x
b&a

, ...=
are dense in C� [a, b].

We now show that the density of algebraic polynomials in C[a, b], and
trigonometric polynomials in C� [0, 2?], are in fact equivalent statements.
That is, we prove that each of the fundamental theorems follows from the
other; see also Natanson [68, p. 16�19].

Proposition 3. If trigonometric polynomials are dense in C� [0, 2?], then
algebraic polynomials are dense in C[a, b].

Proof. We present two proofs of this result. The first proof may be
found in Picard [72].

Assume, without loss of generality, that 0�a<b<2?. Extend f # C[a, b]
to some f� # C� [0, 2?]. Since trigonometric polynomials are dense in C� [0, 2?],
there exists a trigonometric polynomial t that is arbitrarily close to f� on
[0, 2?], and thus to f on [a, b]. Every trigonometric polynomial is a finite
linear combination of sin nx and cos nx. As such each is an entire function.
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Thus t is an entire function having an absolutely and uniformly convergent
power series expansion. By suitably truncating this power series we obtain an
algebraic polynomial that is arbitrarily close to t, and thus ultimately to f.

A slight variant on the above bypasses the need to extend f to f� . Assume
f # C[0, 2?], and define

g(x)= f (x)+
f (0)& f (2?)

2?
x.

Then g # C� [0, 2?]. We can now apply the reasoning of the previous
paragraph to obtain an algebraic polynomial p arbitrarily close to g on
[0, 2?], whence it follows that

p(x)&
f (0)& f (2?)

2?
x

is arbitrarily close to f on [0, 2?].
A different and more commonly quoted proof is the following. According

to de la Valle� e Poussin [100, 101] the idea in this proof is due to Bernstein.
Given f # C[&1, 1], set

g(%)= f (cos %), &?�%�?.

Then g # C� [&?, ?] and g is even. As such given =>0 there exists a trigo-
nometric polynomial t for which

| g(%)&t(%)|<=

for all % # [&?, ?]. We divide t into its even and odd parts, i.e.,

te(%)=
t(%)+t(&%)

2

to(%)=
t(%)&t(&%)

2

and note that te and to are also trigonometric polynomials. (Equivalently,
te is composed of the cosine terms of t, while to is composed of the sine
terms of t.)

Since g is even we have

max[ |(g&t)(%)|, |(g&t)(&%)|]

=max[ |(g&te)(%)&to(%)|, |(g&te)(%)+to(%)|]�|(g&te)(%)|,
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and, thus,

| g(%)&te(%)|<=

for all % # [&?, ?]. In other words, since g is even we may assume that t
is even.

Let

t(%)= :
n

m=0

am cos m%.

Each cos m% is a polynomial of exact degree m in cos %. In fact

cos m%=Tm(cos %),

where the Tm are the Chebyshev polynomials (see e.g., Rivlin [78]). Setting

p(x)= :
n

m=0

amTm(x),

we have

| f (x)& p(x)|<=

for all x # [0, 1]. K

Proposition 4. If algebraic polynomials are dense in C[a, b], then
trigonometric polynomials are dense in C� [0, 2?].

Proof. The first proof of this fact was the one given by Weierstrass in
Section 3. To our surprise (and chagrin) we have essentially found only one
other proof of this result, and it is not simple. The proof we give here is de
la Valle� e Poussin's [100, 101] variation on a proof by Lebesgue [53].

Let f # C� [0, 2?] and consider f as being defined on all of R. Set

g(%)=
f (%)+ f (&%)

2

and

h(%)=
f (%)& f (&%)

2
sin %.

Both g and h are continuous even functions of period 2?.
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Define

,(x)= g(arc cos x), �(x)=h(arc cos x).

These are well-defined functions in C[&1, 1]. Thus, given =>0 there exist
algebraic polynomials p and q for which

|,(x)& p(x)|<
=
4

, |�(x)&q(x)|<
=
4

for all x # [&1, 1]. As g and h are even, it follows that

| g(%)& p(cos %)|<
=
4

, |h(%)&q(cos %)|<
=
4

for all %. From the definition of g and h, we obtain

| f (%) sin2 %&[ p(cos %) sin2 %+q(cos %) sin %]|<
=
2

for all %.
We apply this same analysis to the function f (%+?�2) to obtain

algebraic polynomials r and s for which

} f \%+
?
2+ sin2 %&[r(cos %) sin2 %+s(cos %) sin %]}<=

2

for all %. Substituting for %+?�2 gives

| f (%) cos2 %&[r(sin %) cos2 %&s(sin %) cos %]|<
=
2

.

Thus the trigonometric polynomial

p(cos %) sin2 %+q(cos %) sin %+r(sin %) cos2 %&s(sin %) cos %

is an =-approximant to f. K

After these preliminaries we can now look at the inherent methods and
ideas used in the various alternative proofs of either of the two Weierstrass
fundamental theorems of approximation theory. We present these proofs in
more or less the order in which they appeared in print.

Picard. E� mile Picard (1856�1941) (Hermite's son-in-law) had an abid-
ing interest in Weierstrass' theorem and in 1891 in Picard [72] gave the
first in a series of different proofs of the Weierstrass theorems. This proof
also appears in Picard's famous textbook [73]. Later editions of this text-
book expanded upon this, often including other methods of proof, but not
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always with complete references. Picard's proof, like that of Weierstrass, is
based on a smoothing procedure using singular integrals. Picard chose to
use the Poisson integral. His proof proceeds as follows.

Assume f # C� [0, 2?]. As f is continuous and 2?-periodic on R, it is
uniformly continuous thereon. As such, given =>0 there exists a $>0 such
that for |x&%|<$ we have | f (x)& f (%)|<=. Let

P(r, %)=
1

2? |
2?

0

1&r2

1&2r cos(x&%)+r2 f (x) dx

denote the Poisson integral of f.
We claim that, with the above notation,

|P(r, %)& f (%)|<=+
& f & (1&r2)
r(1&cos $)

for all %. This may be explicitly proven as follows.

P(r, %)& f (%)=
1

2? |
2?

0

1&r2

1&2r cos(x&%)+r2 [ f (x)& f (%)] dx

=
1

2? |
|x&%| <$

1&r2

1&2r cos(x&%)+r2 [ f (x)& f (%)] dx

+
1

2? |
$�|x&%|�?

1&r2

1&2r cos(x&%)+r2 [ f (x)& f (%)] dx.

Now

1
2? |

|x&%| <$

1&r2

1&2r cos(x&%)+r2 | f (x)& f (%)| dx

<
=

2? |
2?

0

1&r2

1&2r cos(x&%)+r2 dx==.

In addition

1
2? |

$�|x&%|�?

1&r2

1&2r cos(x&%)+r2 | f (x)& f (%)| dx

�2 & f &
1

2? |
$�|x&%| �?

1&r2

1&2r cos(x&%)+r2 dx�
& f & (1&r2)
r(1&cos $)

.
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This last inequality is a consequence of

1&2r cos(x&%)+r2�2r&2r cos $=2r(1&cos $)

which holds for all x, % satisfying $�|x&%|�?.
As a function of r,

& f & (1&r2)
r(1&cos $)

decreases to zero as r increases to 1. Choose some r1<1 for which

& f & (1&r2
1)

r1(1&cos $)
<=.

Thus

| f (%)&P(r1 , %)|<2=

for all %.
Let

f (%)=a0 �2+ :
�

n=1

[an cos n%+bn sin n%]

denote the Fourier series of f. Recall that the Fourier series of P(r, %) is
given by

P(r, %)=a0 �2+ :
�

n=1

rn[an cos n%+bn sin n%].

Since the an and bn are uniformly bounded, the above Fourier series
converges absolutely, and uniformly converges to P(r, %) for each r<1.
Thus there exists an m for which

}P(r1 , %)&_a0 �2+ :
m

n=1

rn
1(an cos n%+bn sin n%)&}<=

for all %. Set

g(%)=a0 �2+ :
m

n=1

rn
1(an cos n%+bn sin n%).

We have ``constructed'' a trigonometric polynomial satisfying

| f (%)& g(%)|<3=
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for all %. In other words we have proven that in the uniform norm, trigono-
metric polynomials are dense in the space of continuous 2?-periodic functions.

As noted in the proof of Proposition 3, Picard then proves the Weierstrass
theorem for algebraic polynomials based on the above result. Picard ends
his paper by noting that the same procedure can be used to obtain parallel
results for continuous functions of many variables. He was the first to
publish an extension of the Weierstrass theorems to several variables.

As Picard [72] states, this proof is based on an inequality obtained by
H. A. Schwarz (a student of Weierstrass) in his well-known paper [84]. In
fact, as Cakon [23] points out, almost the entire Picard proof can be
found in Schwarz [84]. What is perhaps surprising is that Weierstrass did
not notice this connection.

Lerch I. M. Lerch (1860�1922) was a Czech mathematician of some
renown (see [60, 85]) who attended some of Weierstrass' lectures. Lerch
wrote two papers [56, 57] that included proofs of the Weierstrass theorem
for algebraic polynomials. Unfortunately the paper Lerch [56] written in
1892 is in Czech, difficult to procure, and I have found no reference to it
anywhere in the literature except in Lerch [57] and in a footnote in Borel
[13] (but Borel did not see the paper). Subsequent authors mentioned in
this work were seemingly totally ignorant of this paper. Many of these
authors quote Volterra [102], although [56], written earlier, contains a
similar proof with the same ideas. It is for the reader to decide whether, in
these circumstances, Lerch deserves prominence or only precedence.

We here explain the proof as is essentially contained in [56]. We defer
the discussion of Lerch [57] to a more appropriate place. Let f # C[a, b].
Since f is uniformly continuous on [a, b], it can be uniformly approxi-
mated thereon by a polygonal (piecewise linear) line. Lerch notes that
every polygonal line g may be uniformly approximated by a Fourier cosine
series of the form

a0

2
+ :

�

n=1

ancos
x&a
b&a

n?,

where

an=
2

b&a |
b

a
g(x) cos

x&a
b&a

n? dx.

It was, at the time, well-known to any mathematician worth his salt that
the Fourier cosine series of a continuous function with a finite number of
maxima and minima uniformly converges to the function. This result goes
back to Dirichlet in 1829; see, e.g., [93, p. 399]. Alternatively it is today a
standard result contained in every Fourier series text that if the derivative
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of a continuous function is piecewise continuous with one-sided derivatives
at each point, then its Fourier cosine series converges uniformly. Both these
results follow from the analogous results for periodic functions and the
usual Fourier series. Both these results hold for our polygonal line. As this
Fourier cosine series converges uniformly to our polygonal line we may
truncate it to obtain a trigonometric polynomial (but not a trigonometric
polynomial as in Proposition 2) which approximates our polygonal line
arbitrarily well. Finally, as the trigonometric polynomial is an entire func-
tion we can suitably truncate its power series expansion to obtain our
desired algebraic polynomial approximant.

Volterra. The next published proof of Weierstrass' theorems, due to
Volterra [102], was published in 1897. V. Volterra (1860�1940) proved
only the density of trigonometric polynomials in C� [0, 2?]. As he was
aware of Picard [72], this should not detract from his proof.

Volterra was unaware of Lerch [56] but his proof is much the same. Let
f # C� [0, 2?]. Since f is continuous on a closed interval, it is also uniformly
continuous thereon. As such, it is possible to find a polygonal line that
approximates f arbitrarily well. One can also assume that the polygonal
line is 2?-periodic. It thus suffices to prove that one can arbitrarily well
approximate any continuous, 2?-periodic, polygonal line by trigonometric
polynomials. As stated in the proof of Lerch, the Fourier series of the
polygonal line uniformly converges to the function. We now suitably
truncate the Fourier series to obtain the desired approximation.

C. Runge (1856�1927), E. Phragme� n (1863�1937), H. Lebesgue (1875�1941)
and G. Mittag-Leffler (1846�1927) all contributed proofs of the Weierstrass
approximation theorems, and their proofs are related both in character and
idea. What did each do?

Mittag-Leffler, in 1900, was the last of the above four to publish on this
subject. However he seems to have been the first to point out, in print,
Runge and Phragme� n's contributions. As such we start this story with
Mittag-Leffler. The paper Mittag-Leffler [64] is an ``extract from a letter to
E. Picard''. This was, at the time, a not uncommon format for an article.
Journals were still in their infancy, but were replacing correspondence as
the primary mode of dissemination of mathematical research. Thus this
combination of these two forms. The article came in response to what
Picard had written in his ``Lectures on Mathematics'' given at the Decen-
nial Celebration at Clark University, [74] in 1899. In this grand review
Picard mentions the importance, in the development of the understanding
of functions, of Weierstrass' example of a continuous nowhere differentiable
function, and of Weierstrass' theorem on the representation of every
continuous function on a finite interval as an absolutely and uniformly
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convergent series of polynomials. Picard then goes on to mention his own
proof and that of Volterra [102]. Mittag-Leffler [64] points out that
Weierstrass' theorem also follows from work of Runge [81, 82] in 1885
although, as he notes, it is not explicitly contained anywhere in either of these
two papers. He then explains his own proof, to which we shall return later.
How did Mittag-Leffler know about Weierstrass' theorem following from the
work of Runge? Firstly, Mittag-Leffler was the editor of Acta Mathematica
and, as he writes, he was the one who published Runge's paper. (Mittag-
Leffler founded Acta Mathematica in 1882 and was its editor for 45 years.)
Moreover in the paper of Mittag-Leffler [64] there is a very interesting long
footnote which seems to have been somewhat overlooked. It starts as follows:
I found on this subject among my papers an article of Phragme� n, from the year
1886, which goes thus. What follows is two pages where Phragme� n (who was
23 years old at the time) explains how Weierstrass' theorem can follow from
Runge's work, Phragme� n's simplification thereof, and also how to get from
this the Weierstrass theorem on the density of trigonometric polynomials in
C� [0, 2?] (with some not insignificant additional work). Before we explain this
in detail, let us start with the general idea behind these various proofs.

Let f # C[0, 1]. Since f is continuous on a closed interval, it is also
uniformly continuous thereon. As Lerch and Volterra pointed out, it is thus
possible to find a polygonal line g (which today we might also call a spline of
degree 1 with simple knots) that approximates f uniformly to within any given
=>0, i.e., for which

| f (x)& g(x)|<=,

for all x # [0, 1]. This polygonal line is the first idea in these proofs. The
second idea is to show that there is an arbitrarily good polynomial approxi-
mant to the relatively ``simpler'' g. This will then suffice to prove that we can
find a polynomial which approximates our original f arbitrarily well. The third
and more fundamental idea is to reduce the problem of finding a good polyno-
mial approximant to g (which depends upon f ) to that of finding a good poly-
nomial approximant to one and only one function, independent of f. Each of
Runge, Mittag-Leffler and Lebesgue do this in a different way.

Runge�Phragme� n. We first fix some notation. Let 0=x0<x1< } } } <
xm=1 be the abscissae (knots) of the polygonal line g. There are various ways
of writing g. One elementary way is:

g(x)= g1(x)+ :
m&1

i=1

[ gi+1(x)& gi (x)] h(x&xi), (4.1)

24 ALLAN PINKUS



where gi is the linear polynomial agreeing with g on [xi&1 , x i] and

h(x)={1,
0,

x�0
x<0

.

gi may be explicitly given as

gi (x)= yi&1+\x&xi&1

xi&x i&1+ ( yi& yi&1)

where yj= g(xj), j=0, 1, ..., m.
What Runge did in [82] is the following. He considered the function

,n(x)=
1

1+x2n

which has the property that

1, |x|<1

lim
n � �

,n(x)={1�2, |x|=1.

0, |x|>1

Set �n(x)=1&,n(1+x). Then restricted to [&1, 1] we have

1, 0<x<1

lim
n � �

�n(x)={1�2, x=0 .

0, &1<x<0

Since each �n is increasing on [&1, 1], and �n+1(x)>�n(x) for x # (0, 1],
while �n+1(x)<�n(x) for x # (&1, 0), it follows that given any $>0,
small, the functions �n are bounded on [&1, 1] and uniformly converge to
the function h on [&1, &$] _ [$, 1] for any given $.

Since the linear polynomial gi+1& gi vanishes at x i , a short calculation
verifies that for each xi # (0, 1)

[ gi+1(x)& gi (x)] �n(x&x i )

uniformly converges to

[ gi+1(x)& gi (x)] h(x&x i )

on [0, 1]. Replacing the h in (4.1) by �n we obtain a series of functions
which uniformly approximate g.
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These functions

9n(x)= g1(x)+ :
m&1

i=1

[ g i+1(x)& gi (x)] �n(x&x i )

are not polynomials or entire functions. But they are rational functions.
Thus any continuous function on a finite real interval can be uniformly
approximated by rational functions. This is the main result of [82]. It was
published the same year as Weierstrass' theorem.

Runge also discussed what could be said in the case of continuous func-
tions on all of R. In that context he noted that from one of his results in
[81] one could always replace 9n by another rational function, real on R,
with exactly two conjugate poles.

Phragme� n in the above-mentioned footnote in [64] (but according to
Mittag-Leffler written in 1886), remarks that apparently Runge overlooked
in [82] (or did not think important) the fact that he could replace rational
functions by polynomials. Runge quite explicitly had the tools to do this
from [81].

What is the relevant result from [81]? It is the following, which we state
in an elementary form. Assume D is a compact set and C"D is connected.
Let R be a rational function with poles outside D. Then given any point
w # C"D there are rational functions, with only the one pole w, that
approximate R arbitrarily well on D. This is not a difficult result to prove.
Here, essentially, is Runge's proof. The rational function R can be decom-
posed as R=�n

j=1 Rj where each Rj is a rational function with only one
pole wj . We now show how to move each wj to w in a series of finite steps.
For each j we choose a0 , ..., am , where a0=wj and am=w, and the ai are
chosen so that

|ai&1&ai |<|z&ai |, i=1, ..., m

for all z # D. This can be done. At each stage we will construct a rational
function Gi (G0=Rj ) with only the simple pole ai , and such that Gi is
arbitrarily close to Gi&1 . This follows from the fact that for given k # N the
function

1
(z&ai&1)k

can be arbitrarily well approximated on D by

_ 1
(z&ai&1) _1&\ai&1&ai

z&a i +
n

&&
k
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by taking n sufficiently large. Note that the latter is a rational function with
a pole only at ai . Runge further noted that by a linear fractional transfor-
mation (and a bit of care) the pole could be shifted to �, whence the
rational function becomes a polynomial. As Phragme� n points out, if the
function f to be approximated on [0, 1] is real, we can replace the polyno-
mial approximant G obtained above by Re G on [0, 1] which is also a
polynomial and which better approximates f thereon. Thus Weierstrass'
theorem is proved.

Phragme� n also notes that it is really not necessary to use the results of
[81]. If we go back to Runge [82] and consider his construction therein,
we see that each of the rational approximants are real on [0, 1], and have
denominator 1+(1+x)2n for some n. Any such R may be decomposed as

R= g+r1+r2 ,

where g is a polynomial, r1 is a rational function, all of whose poles lie in
the upper half-plane, and r2=r1 is a rational function, all of whose poles
lie in the lower half-plane. It is possible to choose a point z1 in the lower
half plane such that there exists a circle centered at z1 containing [0, 1],
but not containing any poles of r1 . As such the Taylor series of r1 about
z1 converges uniformly to r1 in [0, 1]. Truncate it to obtain a polynomial
p1 that approximates r1 arbitrarily well on [0, 1]. It follows that p2=p1

has the corresponding property with respect to r2 . As such

P= g+ p1+ p2

is a real polynomial that can be chosen to approximate f arbitrarily well.
Another simple option, not mentioned by Phragme� n, is simply to use the

result of [81], to move the poles of any rational approximant away from
[0, 1] so that a circle can be put about [0, 1] which does not contain any
poles, and then use the truncated power series as above. Phragme� n's proof
of the density of trigonometric polynomials in C� [0, 2?] is more com-
plicated and we will not present it here.

In any case, as we have seen, the Weierstrass theorem is a fairly simple
consequence of Runge's results from 1885. It is unfortunate and somewhat
astonishing that Runge did not independently arrive at this theorem.

Lebesgue. Let us now give Lebesgue's proof of Weierstrass' theorem
from 1898 as found in Lebesgue [53]. This is one of the more elegant and
cited proofs of Weierstrass' theorem. It is interesting to note that this was
Lebesgue's first published paper. He was, at the time of publication, a 23
year old student at the E� cole Normale Supe� rieure. He obtained his doctorate
in 1902.
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A more ``modern'' form of writing the g of (4.1) is as a spline. That is,

g(x)=ax+b+ :
m&1

i=1

ci (x&xi)
1
+ ,

where

x1
+={x,

0,
x�0
x<0

,

and ax+b= g1(x). (This easily follows from the form (4.1). As gi+1(x)&
gi (x) is a linear polynomial that vanishes at xi , it is necessarily of the form
ci (x&xi) for some constant ci .) Since

2x1
+=|x|+x

the above form of g may also be rewritten as

g(x)=Ax+B+ :
m&1

i=1

Ci |x&xi | (4.2)

for some real constants A, B, and Ci .
Lebesgue [53] considers the form (4.2) of g, and argues as follows. To

approximate g arbitrarily well by a polynomial it suffices to be able to
approximate |x| arbitrarily well by a polynomial in [&1, 1] (or in fact in
any neighbourhood of the origin). If for given '>0 there exists a polyno-
mial p satisfying

| |x|& p(x)|<'

for all x # [&1, 1], then

| |x&xi |& p(x&xi)|<'

for all x # [0, 1]/[xi&1, xi+1] (since 0�xi�1). By a judicious choice
of ' depending on the predetermined constants Ci in (4.2), it then follows
that

}g(x)&_Ax+B+ :
m&1

i=1

Ci p(x&x i)&}<=

for all x # [0, 1].
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Thus our problem has been reduced to that of approximating just the
one function |x|. How can this be done? As Lebesgue explains, one can
write

|x|=- x2=- 1&(1&x2)=- 1&z,

where z=1&x2, and then expand the above radical by the binomial
formula to obtain a power series in z=1&x2 which converges uniformly
to |x| in [&1, 1]. One finally just truncates the power series.

To be more explicit, we have

(1&z)1�2= :
�

n=0
\1�2

n + (&z)n,

where

\1�2
n +=

1
2 \

1
2

&1+ } } } \1
2

&n+1+
n!

=
(&1)n&1 1

2
1
2

3
2

} } }
2n&3

2
n!

.

Thus

(1&z)1�2=1& :
�

n=1

anzn,

where a1=1�2, and

an=
(2n&3)!

22n&2 n!(n&1)!
, n=2, 3, ...

This power series converges absolutely and uniformly to (1&z)1�2 in
|z|�1. It is easily checked that the radius of convergence of this power
series is 1. An application of Stirling's formula shows that

an=
e

2 - ?

1

n3�2
(1+o(1))

so that the series also has the correct convergence properties for |z|=1.
A different proof of this same fact may be found in [96]. This finishes
Lebesgue's proof.

An alternative argument (see Ostrowski [70, p. 168] or Feinerman,
Newman [28, p. 5]) gets around the more delicate analysis at |z|=1 by
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noting that (1&z)1�2 may be uniformly approximated on [0, 1] by
(1&\z)1�2 as \ A 1. (In fact it is easily checked that for 0<\<1

|(1&z)1�2&(1&\z)1�2|�(1&\)1�2

for all z # [0, 1].) Now the power series for (1&\z)1�2, namely

(1&\z)1�2=1& :
�

n=1

an \nzn,

is absolutely and uniformly convergent in |z|<\&1 and thus in |z|�1.
Bourbaki [15, p. 55] (see also Dieudonne� [26, p. 137]) presents an

ingenious argument to obtain a sequence of polynomials which uniformly
approximate |x|. For t # [0, 1] define a sequence of polynomials recursively
as follows. Let p0(t)#0 and

pn+1(t)= pn(t)+ 1
2 (t& p2

n(t)),

n=0, 1, 2, ... . It is readily verified that for each fixed t # [0, 1], pn(t) is an
increasing sequence bounded above by - t. The former is a consequence of
the latter which is proven as follows. Assume 0�pn(t)�- t. Then

- t& pn+1(t)=- t& pn(t)& 1
2 (t& p2

n(t))

=(- t& pn(t))(1& 1
2 (- t+ pn(t)))

�0

since - t+ pn(t)�2 - t�2 for t # [0, 1]. Thus for each t # [0, 1]

lim
n � �

pn(t)= p(t)

exists. Since p(t) is nonnegative and satisfies

p(t)= p(t)& 1
2 (t& p2(t))

we have p(t)=- t. The [ pn] are real-valued continuous functions (polyno-
mials) which increase, and converge pointwise to a continuous function p.
This implies that the convergence is uniform (Dini's theorem). Let qn(x)=
pn(x2) for x # [&1, 1]. Then the polynomials [qn] converge uniformly to
- x2=|x| on [&1, 1].

A similar proof may be found in Sz.-Nagy [93, p. 77]. He considers the
series of polynomials defined by p0(x)#1 and

pn+1(x)= 1
2 [ p2

n(x)+(1&x2)],
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n=0, 1, 2, ... on [&1, 1]. The [ pn] monotonically (and uniformly) decrease
to 1&|x|. (Sz.-Nagy attributes this procedure to C. Visser.)

Mittag-Leffler. Mittag-Leffler presented his own proof in 1900 in [64].
He also considers g as given in (4.1). His proof then proceeds as follows.
Let

/n(x)=1&21&(1+x) n
.

It is easily checked that

1, 0<x�1

lim
n � �

/n(x)={0, x=0 .

&1, &1�x<0

Furthermore, since each /n is increasing on [&1, 1], and /n+1(x)>/n(x)
for x # (0, 1], while /n+1(x)</n(x) for x # (&1, 0), it follows that given
any $>0, small, the function /n uniformly converges to 1 on [$, 1] and to
&1 on [&1, &$]. Thus the functions

hn=
/n+1

2

are bounded on [&1, 1] and uniformly approximate the function h of (4.1)
on [&1, &$] _ [$, 1] for any given $. Furthermore the /n and thus the hn

are entire (analytic) functions.
As previously, since gi+1& gi is a linear polynomial vanishing at x i ,

a short calculation verifies that for each xi # (0, 1)

[ gi+1(x)& gi (x)] hn(x&x i )

uniformly converges to

[ gi+1(x)& gi (x)] h(x&x i )

on [0, 1]. Replacing the h in (4.1) by hn we obtain a series of functions
[Hn] that uniformly approximate g. Finally, since hn is an entire function,
each of the functions Hn is an entire function. As such they may be
approximated arbitrarily well by a truncation of their power series. This
again proves Weierstrass' theorem.

Feje� r. L. Feje� r (1880�1959) was a student of H. A. Schwarz and thus a
grandstudent of Weierstrass. What we will report on here is taken from [29]
(he had just turned 20 when the paper appeared in 1900). This fundamental
paper formed the basis for Feje� r's doctoral thesis obtained in 1902 from the
University of Budapest. This paper contains what is today described as the
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``classic'' theorem on Cesa� ro (C, 1) summability of Fourier series. As we are
interested in Weierstrass' theorem, we will restrict ourselves, a priori, to
f # C� [0, 2?], and prove that the Cesa� ro sum of the Fourier series of any
such f converges uniformly to f. Note that this is the first proof of
Weierstrass' theorem (in the trigonometric polynomial case) that actually
provides, by a linear process, a sequence of easily calculated approximants.

Let _0(x)=1�2, and

_m(x)= 1
2+cos x+cos 2x+ } } } +cos mx

for m=1, 2, ... . Set

Gn(x)=
_0(x)+ } } } +_n&1(x)

n
.

A calculation shows that

Gn(x)=
1

2n
1&cos nx
1&cos x

=
1

2n _
sin \nx

2 +
sin \x

2+ &
2

.

Furthermore it is easily seen that

1
? |

2?

0
Gn(x) dx=1.

Gn is a nonnegative kernel that integrates to 1 (and, as we shall show
approaches the Dirac-Delta function at 0 as n tends to infinity, i.e.,
convolution against Gn approaches the identity operator).

Assume f # C� [0, 2?]. Let

a0

2
+ :

�

k=1

ak cos kx+bk sin kx

denote the Fourier series of f. Let s0(x)=a0 �2, and

sm(x)=
a0

2
+ :

m

k=1

ak cos kx+bk sin kx
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denote the partial sums of the Fourier series. The functions sm do not
necessarily converge uniformly, or pointwise, to f as m � �. However let
us now set

Sn(x)=
s0(x)+ } } } +sn&1(x)

n
=

1
? |

2?

0
f ( y) Gn( y&x) dy.

Explicitly the Sn are given by

Sn(x)=
a0

2
+ :

n&1

k=1
\1&

k
n+ [ak cos kx+bk sin kx].

Surprisingly (at the time) the Sn always converge uniformly to f.

Theorem 5. For each f # C� [0, 2?], the trigonometric polynomials Sn

converge uniformly to f as n � �.

Proof. From the above

Sn(x)=
1
? |

2?

0
f ( y) Gn( y&x) dy=

1
2n? |

2?

0
f ( y)

1&cos n( y&x)
1&cos( y&x)

dy.

Since f # C� [0, 2?], f may be considered to be uniformly continuous on all
of R. Thus given =>0 there exists a $>0 such that if |x& y|<$, then

| f (x)& f ( y)|<
=
2

.

In what follows we assume $<?�2.
Since Gn integrates to 1 we have

Sn(x)& f (x)=
1
? |

2?

0
[ f ( y)& f (x)] Gn( y&x) dy

=
1
? |

| y&x| <$
[ f ( y)& f (x)] Gn( y&x) dy

+
1
? |

$�| y&x|�?
[ f ( y)& f (x)] Gn( y&x) dy.

We estimate each of the above two integrals.
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On | y&x|<$, we have | f (x)& f ( y)|< =
2 . Thus

} 1? |
| y&x|<$

[ f ( y)& f (x)] Gn( y&x) dy }<=
2

1
? |

| y&x|<$
Gn( y&x) dy

<
=
2

1
? |

2?

0
Gn( y&x) dy=

=
2

.

We have here used the crucial fact that Gn is nonnegative and integrates to
1 over any interval of length 2?.

From the explicit form of Gn and the inequality | f ( y)& f (x)|�2 & f & we
have

} 1? |
$�| y&x| �?

[ f ( y)& f (x)] Gn( y&x) dy }
�

2 & f &
2n? |

$�| y&x|�?

1&cos n( y&x)
1&cos( y&x)

dy.

Now |1&cos n( y&x)|�2, while on $�| y&x|�? we have 1&cos( y&x)
�1&cos $. Thus

} 1? |
$�| y&x|�?

[ f ( y)& f (x)] Gn( y&x) dy }
�

2 & f &
2n?

2
1&cos $

2?=
4 & f &

n(1&cos $)
.

For n sufficiently large

4 & f &
n(1&cos $)

<
=
2

.

Thus for such n

|Sn(x)& f (x)|<=. K

Applying the method of the (second) proof of Proposition 3 to the above
we see that to each f # C[&1, 1] we obtain a sequence of algebraic
polynomials

pn(x)=
a0

2
+ :

n&1

k=1
\1&

k
n+ akTk (x)
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where

ak=
2
? |

1

&1

f (x) Tk (x)

- 1&x2
dx,

k=0, 1, ... . These explicitly defined pn (each of degree at most n&1)
uniformly approximate f.

Lerch II. The paper Lerch [57] published in 1903 contains yet another
proof of the density of algebraic polynomials in C[0, 1]. In his previous
proof, in [56], Lerch had used general properties of Fourier series to prove
the Weierstrass theorem for algebraic polynomials. His proof here is
different in that while the same general scheme is used, he only needs to
consider the Fourier series of two specific functions, and their properties. In
this sense it is more elementary than his previous proof.

We recall from [56] that it suffices to be able to arbitrarily approximate
the polygonal line g as given in (4.1). Lerch rewrites (4.1) in the form

g(x)= :
m

i=1

li (x),

where

0, x<xi&1

li (x)={ yi&1+\ x&xi&1

xi&xi&1+ ( yi& yi&1) xi&1�x<xi

0, xi�x

(when defining lm we should, for precision, define it to equal ym at xm=1).
As we mentioned, Lerch bases his proof on quite explicit Fourier series.

It is well known and easily checked that

1
2

&x= :
�

n=1

sin 2n?x
n?

, 0<x<1, (4.3)

and

x2&x+
1
6

= :
�

n=1

cos 2n?x
n2?2 , 0�x�1. (4.4)

There is a problem with the convergence of the Fourier series in (4.3). This
series converges uniformly to 1�2&x on any [a, b], 0<a<b<1, but does
not converge uniformly in any neighbourhood of x=0 or x=1. (In fact its
value at x=0 and x=1 is 0.) However the series in (4.4) does converge
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absolutely and uniformly to the given function on [0, 1]. It is also readily
checked, using the 1-periodicity of the Fourier series, that the function

1
2

(xi&xi&1)( yi+ yi&1)+ :
�

n=1

yi&1 sin 2n?(x&x i&1)& yi sin 2n?(x&xi)
n?

&
1
2

( yi& yi&1)
(xi&x i&1)

:
�

n=1

cos 2n?(x&x i&1)&cos 2n?(x&xi)
n2?2

is the Fourier series of li and that there is uniform convergence of this
series to li on any compact subset of [0, 1] not containing x i&1 and xi .

Thus

1
2

:
m

i=1

(xi&xi&1)( yi+ yi&1)+ :
�

n=1

y0 sin 2n?x& ym sin 2n?(x&1)
n?

&
1
2

:
m

i=1

( yi& yi&1)
(x i&xi&1)

:
�

n=1

cos 2n?(x&xi&1)&cos 2n?(x&xi)
n2?2

is the Fourier series of g. Note that this series converges uniformly to g also
at x1 , ..., xm&1 . There remains the problem of convergence at x0=0 and
xm=1. (However if g # C� [0, 1], i.e., g is 1-periodic, then y0= ym and the
problematic term has disappeared. In this case, we have constructed the
Fourier series of g which converges absolutely and uniformly to g on [0, 1].
Truncate this Fourier series to obtain a trigonometric polynomial which
approximates g arbitrarily well. This proves the density of trigonometric
polynomials.) If y0 { ym then we may, as does Lerch, again apply (4.3) to
obtain

1
2

:
m

i=1

(xi&xi&1)( yi+ yi&1)+( y0& ym) \1
2

&x+
&

1
2

:
m

i=1

( yi& y i&1)
(x i&x i&1)

:
�

n=1

cos 2n?(x&xi&1)&cos 2n?(x&x i)
n2?2 .

(Alternatively, just shift g by a polynomial so that the new g satisfies
g(0)= g(1).) This series converges absolutely and uniformly to g on all of
[0, 1]. Truncating this infinite series we obtain an entire function (trigono-
metric polynomial) that approximates g arbitrarily well. We now appropriately
truncate the power series of this entire function to obtain the desired algebraic
polynomial.

Unfortunately, there is no indication, in [57], that Lerch was aware of
any of the other previous proofs of the Weierstrass theorem. A more careful
consideration of this proof shows that it is essentially a quasi-constructive
version of Lebesgue's proof.
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Landau. The 1908 proof of E. Landau (1877�1938) in [52] follows the
tradition of the proofs of Weierstrass, Picard and Feje� r in that the essential
underlying mechanism in his proof is a singular integral. However it is
more direct than the former two in its judicious choice of the kernel. Let
f # C[a, b] where, without loss of generality, it will be assumed that 0<a
<b<1. Extend f to be a continuous function on all of [0, 1].

Define

kn=|
1

&1
(1&u2)n du

and set

pn(x)=
1

kn
|

1

0
f ( y)[1&(x& y)2]n dy.

Note that pn is a polynomial of degree at most 2n in x. What Landau
proves is that the sequence of polynomials [ pn] converge uniformly to f on
[a, b]. Landau's sequence of polynomial approximants differ from those of
the previous proofs (except for Feje� r's proof) in that they are explicitly
given, and in that they are obtained via a linear method.

We first present Landau's original proof. In this proof we will use the
following estimates. For every 0<$<1,

|
$�|u|�1

(1&u2)n du�|
$�|u|�1

(1&$2)n du<2(1&$2)n.

Similarly

kn=|
1

&1
(1&u2)n du�|

|u|�1�- n
(1&u2)n du

�|
|u|�1�- n \1&

1
n+

n

du=
2

- n \1&
1
n+

n

.

Thus

1
kn

|
$�|u| �1

(1&u2)n du�- n (1&$2)n \1&
1
n+

&n

.

Note that for every fixed $ # (0, 1) we have

lim
n � �

- n (1&$2)n \1&
1
n+

&n

=0.
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Now choose =>0. Since f is uniformly continuous on [0, 1] there exists
a $>0 such that if x, y # [0, 1] satisfies |x& y|<$, then

| f (x)& f ( y)|<=�3.

Assume 0<$<min[a, 1&b]. Choose N so that for all n�N

2 & f & - n (1&$2)n \1&
1
n+

&n

<=�3.

For every x # [a, b],

| pn(x)& f (x)|= } 1
kn

|
1

0
f ( y)[1&(x& y)2]n dy& f (x) }

�
1

kn
|

1

0
| f ( y)& f (x)| [1&(x& y)2]n dy

+| f (x)| } 1&
1

kn
|

1

0
[1&(x& y)2]n dy } .

We separate the integral

1
kn

|
1

0
| f ( y)& f (x)| [1&(x& y)2]n dy

into

1
kn

|
|x& y| <$

| f ( y)& f (x)| [1&(x& y)2]n dy

+
1

kn
|

0�y�1
$�|x& y|

| f ( y)& f (x)| [1&(x& y)2]n dy.

Now

1
kn

|
|x& y|<$

| f ( y)& f (x)| [1&(x& y)2]n dy

<
=
3

1
kn

|
|x& y|<$

[1&(x& y)2]n dy<
=
3

.
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Furthermore

1
kn

|
0�y�1
$�|x& y|

| f ( y)& f (x)| [1&(x& y)2]n dy

�
2 & f &

kn
|

$�|u|�1
[1&u2]n du

�2 & f & - n (1&$2)n \1&
1
n+

&n

<=�3.

Finally

| f (x)| } 1&
1

kn
|

1

0
[1&(x& y)2]n dy }

�
& f &
kn } |

1

1
[1&u2]n du&|

1&x

&x
[1&u2]n du } .

Since x # [a, b] and $<min[a, 1&b], we have

& f &
kn } |

1

&1
[1&u2]n du&|

1&x

&x
[1&u2]n du }

�
& f &
kn

|
$�|u| �1

[1&u2]n du

�& f & - n (1&$2)n \1&
1
n+

&n

<=�3.

This proves the result.

For completeness and as a matter of interest, it easily follows from
integration by parts that

kn=|
1

&1
[1&u2]n du=

22n+1(n!)2

(2n+1)!
.

Applying Stirling's formula it may be shown that

lim
n � �

- n kn=- ?.

The following is a variation on and simplification of Landau's proof. It
is due to Jackson [45]. As above, assume f # C[a, b] with 0<a<b<1.
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Extend f to be a continuous function on all of R which also vanishes identi-
cally off [0, 1]. This latter fact, together with a change of variable argument,
gives

pn(x)=
1

kn
|

1

0
f ( y)[1&(x& y)2]n dy

=
1

kn
|

1

&1
f (x+u)(1&u2)n du

and thus we get the simpler

pn(x)& f (x)=
1

kn
|

1

&1
[ f (x+u)& f (x)](1&u2)n du.

Let = and $ be as above. For |u|�$, we have

| f (x+u)& f (x)|�2 & f &�
2 & f & u2

$2 ,

while for |u|<$ we have

| f (x+u)& f (x)|<
=
3

.

Thus

| f (x+u)& f (x)|<
=
3

+
2 & f & u2

$2

for all x, u # [0, 1]. Substituting it follows that

| pn(x)& f (x)|<
1

kn
|

1

&1

=
3

(1&u2)n du+
1

kn
|

1

&1

2 & f & u2

$2 (1&u2)n du

=
=
3

+
2 & f &
$2kn

|
1

&1
u2(1&u2)n du.

Set

jn=|
1

&1
u2(1&u2)n du.
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Integration by parts yields

jn=
&u(1&u2)n+1

2(n+1) }
1

&1

+|
1

&1

(1&u2)n+1

2(n+1)
du=

kn+1

2(n+1)
.

Since (1&u2)�1 on [&1, 1] we also have kn+1�kn . Thus

jn�
kn

2(n+1)
.

Substituting we obtain

| pn(x)& f (x)|<
=
3

+
& f &

$2(n+1)
.

We now choose n sufficiently large so that

| pn(x)& f (x)|<=

for all x # [0, 1] and thus on [a, b].
For much more concerning the ``Landau'' polynomials, see Butzer, Stark

[21] and the many references therein.

A few months after the appearance of Landau [52], Lebesgue ``responded''
with [54] which appeared in the same journal and is an ``extract from a
letter addressed to E. Landau''. Despite Lebesgue's flowery opening Je me
fe� licite de m'etre rencontre� avec vous sur un point particulier..., Lebesgue
then goes on to inform Landau that he actually had the same proof for
more than two years, but his manuscript was not yet ready (he is probably
referring to his treatise [55]). But since Landau did publish, then Lebesgue
feels called upon to tell Landau (and the world) about some of his reflec-
tions on this matter. Aside from the entertainment value of this exchange
between two stars, Lebesgue does make two valid points. The first has less
to do with Landau's particular proof than with the proofs of Weierstrass,
Picard, Feje� r, and Landau. Lebesgue notes that these proofs can and
should be considered within the general context of integral convolutions
with sequences of non-negative kernels, where the convolution approaches
the identity. This was subsequently elaborated upon in [55]. We will
consider this approach later in Section 5. Furthermore in the latter half of
this short paper Lebesgue goes on to ask questions about the order of
approximation. This is a clear indication that the subject is evolving.

De la Valle� e Poussin. In addition to the above claim of Lebesgue, the
1908 treatise of de la Valle� e Poussin [98] contains a proof of Weierstrass'
theorem using this exact same integral. In fact Ch. J. de la Valle� e Poussin
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(1866�1962) devotes over 30 pages of his paper to a study of its various
approximation properties (and not only the question of density). A foot-
note on p. 197 therein states that de la Valle� e Poussin was made aware of
Landau's paper only while editing his own paper. So it seems that three
outstanding mathematicians almost simultaneously discovered this method
of proving Weierstrass' theorem. As Landau points out, this integral had
in fact already been introduced by Stieltjes in a letter to Hermite dated
September 12, 1893 (see [2]).

De la Valle� e Poussin, in the second half of [98], introduced what he
regarded as the periodic analogues of the Landau integrals. These are

In(x)=
1

hn
|

?

&?
f ( y) _cos \y&x

2 +&
2n

dy,

where

hn=|
?

&? _cos \ y
2+&

2n

dy=
?(2n)!

22n&1(n!)2 .

In is a trigonometric polynomial of degree at most n. The proof of the fact
that the In uniformly converge to f for f # C� [&?, ?] is very similar to the
proof of the analogous result for the Landau integrals. We will not repeat
the proof here. For more concerning this proof, this paper, and de la Valle� e
Poussin's other contributions to approximation theory, we recommend
Butzer, Nessel [20].

Bernstein. What we will arbitrarily call the last of the early proofs of the
Weierstrass theorem is due to S. N. Bernstein (1880�1968) and appeared in
1912�13 in [7]. (The thesis advisor of Bernstein's first doctorate was
Picard.) This paper is reproduced in Stark [87]. A translation into Russian
appears in his somewhat more accessible collected works. This proof is very
much different from the previous proofs, and has had a profound impact
in various areas. It is here that Bernstein introduces what we today call
Bernstein polynomials.

The Bernstein polynomial of f # C[0, 1] is defined by

Bn(x)= :
n

m=0

f \m
n+\

n
m+ xm(1&x)n&m.

Bernstein demonstrates, using probabilistic ideas, that the Bn converge
uniformly to f on [0, 1]. The proof of this fact, as generally given today,
is slightly different from Bernstein's original proof and has the added
advantage of providing ``error estimates''. We will here present Bernstein's
original proof, although it is somewhat overinvolved.
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Since f # C[0, 1], given =>0 there exists a $>0 such that

|x& y|<$

implies

| f (x)& f ( y)|<
=
2

for all x, y # [0, 1]. Set

f� (x)=max[ f ( y): y # [x&$, x+$] & [0, 1]]

and

f
�
(x)=min[ f ( y): y # [x&$, x+$] & [0, 1]].

Thus for each x # [0, 1]

0� f� (x)& f (x)<
=
2

,

and

0� f (x)&f
�
(x)<

=
2

.

For fixed $>0 as above, set

'n(x)= :
[m: |x&(m�n)|>$] \

n
m+ xm(1&x)n&m.

From the decomposition

Bn(x)= :
n

m=0

f \m
n+\

n
m+ xm(1&x)n&m

= :
[m: |x&(m�n)| �$]

f \m
n +\

n
m+ xm(1&x)n&m

+ :
[m: |x&(m�n)| >$]

f \m
n +\

n
m+ xm(1&x)n&m,

it easily follows that

f
�
(x)[1&'n(x)]&& f & 'n(x)�Bn(x)� f� (x)[1&'n(x)]+& f & 'n(x).
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Bernstein then states that according to Bernoulli's theorem there exists an
N such that for all n>N and all x # [0, 1] we have

'n(x)<
=

4 & f &
.

Thus as a consequence of

f (x)+[ f
�
(x)& f (x)]&'n(x)[& f &+f

�
(x)]

�Bn(x)� f (x)+[ f� (x)& f (x)]+'n(x)[& f && f� (x)],

we obtain

f (x)&
=
2

&
=

4 & f &
2 & f &<Bn(x)< f (x)+

=
2

+
=

4 & f &
2 & f &,

which gives

|Bn(x)& f (x)|<=

for all x # [0, 1].
For completeness we now verify Bernstein's statement regarding 'n(x).

(For a probabilistic explanation of this quantity and estimate, see e.g.
Levasseur [58].) To this end confirm that

:
n

m=0
\ n

m+ xm(1&x)n&m=1

:
n

m=0

m
n \

n
m+ xm(1&x)n&m=x

and

:
n

m=0

m2

n2 \ n
m+ xm(1&x)n&m=x2+

x(1&x)
n

.

Then

'n(x)= :
[m: |x&(m�n)|>$] \

n
m+ xm(1&x)n&m

� :
[m: |x&(m�n)|>$]

\x&
m
n

$ +
2

\ n
m+ xm(1&x)n&m
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�
1
$2 :

n

m=0
\x&

m
n +

2

\ n
m+ xm(1&x)n&m

=
1
$2 _x2&2x } x+x2+

x(1&x)
n &

=
x(1&x)

n$2 �
1

4n$2

for all x # [0, 1]. Thus for each fixed $>0 we can in fact choose N such
that for all n�N and all x # [0, 1]

'n(x)<
=

4 & f &
.

This ends Bernstein's proof.

Bernstein's proof is beautiful and elegant! It constructs in a simple, linear
(but unexpected) manner a sequence of approximating polynomials depend-
ing explicitly on the values of f at rational values. No further information
regarding f is used. This was not the first attempt to find a proof of the
Weierstrass theorem using a suitable partition of unity. In Borel [13,
pp. 79�82], which seems to have been the first textbook devoted mainly to
approximation theory, we find the following formula for constructing a
sequence of polynomials approximating every f # C[0, 1].

E. Borel (1871�1956) proved that the sequence of polynomials

pn(x)= :
n

m=0

f \m
n + qn, m(x)

uniformly approximates f where the qn, m are fixed polynomials independent
of f. His qn, m are constructed as follows. Set

0, }x&
m
n }>

1
n

gn, m(x)={nx&(m&1),
m&1

n
�x�

m
n

&nx+(m+1),
m
n

�x�
m+1

n
.
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Note that the gn, m are non-negative, sum to 1, and gn, m(m�n)=1. Let (by
the Weierstrass theorem) qn, m be any polynomial satisfying

| gn, m(x)&qn, m(x)|<
1
n2

for all x # [0, 1]. It is now not difficult to verify that the pn do approximate
f. However the Bernstein polynomials are so much more satisfying in so
many ways.

5. GENERALIZATIONS AND ADDITIONAL PROOFS

A time came when there was no longer any distinction in inventing a proof of
Weierstrass's theorem, unless the new method could be shown to possess some
specific excellence, in the way of simplicity, for example, or rapidity of convergence.

��D. Jackson [43, p. 418]

Most great theorems are significant not only in the questions they
answer, but also in their influence on the development of a field. This is
particularly valid in the case of the Weierstrass approximation theorems. If
we were to consider here all consequences or developments from the
Weierstrass theorems, then this article would be an immense book. We will
not do that. We will rather consider various results which provide different
perspectives, insights and generalizations of the Weierstrass theorems. The
topics we will touch upon in this section are (again in chronological order)
the Mu� ntz theorem, Hermite�Feje� r interpolation, Carleman's theorem, the
Stone�Weierstrass theorem, the Bohman�Korovkin theorem, and finally, a
strikingly elementary proof of the Weierstrass theorem due to Kuhn.

Mu� ntz's theorem. The three principal mathematicians who led the
development of approximation theory in the early decades of the twentieth
century were S. N. Bernstein, D. Jackson and Ch. J. de la Valle� e Poussin.
The predominant of these was undoubtedly S. N. Bernstein. In his paper
Bernstein [5] in the proceedings of the 1912 International Congress of
Mathematicians held at Cambridge, Bernstein wrote the following: It will
be very interesting to know if the conditions � 1

pk
=� are necessary and

sufficient for the system [x pk ] to be complete. However it is not completely
certain that such necessary and sufficient conditions will exist. Bernstein also
addressed this question in Bernstein [6].

The Weierstrass theorems can and should be viewed as density theorems.
In fact they were the first significant density theorems. Thus it is natural to
search for other ``complete'' systems of functions, i.e., other systems whose
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linear span would be dense. This is the question being posed by Bernstein,
who himself had obtained some partial results.

It was just two years later in 1914 that Ch. H. Mu� ntz (1884�1956), see
[65], was able to provide a solution confirming Bernstein's qualified guess.

Mu� ntz's Theorem. The system

x p0, x p1, x p2, ...,

where 0�p0<p1<p2< } } } is dense in C[0, 1] if and only if p0=0 and

:
�

k=1

1
pk

=�.

Mu� ntz's proof of his theorem contains all the elements of the proof
which may be found in many of the classic texts on approximation theory,
see e.g. Achieser [1, pp. 43�46], Cheney [25, pp. 193�198], and Borwein,
Erde� lyi [14, pp. 171�205]. (The last reference presents many generaliza-
tions of Mu� ntz's theorem and also surveys the literature on this topic.)
Mu� ntz's basic idea was to prove that one can approximate each xn in
L2[0, 1] (n # N) from the above system iff � 1

pk
=�. This was done via

``lemmas'' due to Cauchy and to Gram. One then uses a simple trick
bounding the uniform norm of the function with the L2[0, 1] norm of its
derivative, and finally one applies Weierstrass' theorem. The proof in
Mu� ntz [65], although it contains all these ideas, is rather clumsy. Two
years later Sza� sz [92] generalized Mu� ntz's results and also put Mu� ntz's
argument into a more elegant form. We mention all this in order to justify
the fact that we will not reprove this result here.

An alternative proof of Mu� ntz's theorem and its numerous generaliza-
tions is via duality and the possible sets of uniqueness for analytic func-
tions, see e.g. Rudin [80, pp. 304�307], Luxemburg, Korevaar [59], and
Feinerman, Newman [28, Chap. X]. This method of proof is not based on
the Weierstrass theorems. As such it provides us with yet another proof,
albeit far from simple or elementary, of the Weierstrass theorems. For some
different approaches see, for example, Rogers [79], Burckel, Saeki [19].

Hermite�Feje� r interpolation. Lagrange interpolation by algebraic poly-
nomials has a long and distinguished history. One topic which has evoked
much interest over the years has been the question of the convergence of
the interpolation process.

To be more specific, given a triangular array [xnj]n
j=0

�
n=0 of points in

[a, b], a�xn0< } } } <xnn�b, then to each f # C[a, b] and n # N there
exists a unique algebraic polynomial pn of degree at most n for which

pn(xnj)= f (xnj), j=0, 1, ..., n.
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It is natural to ask if there exists an array, as above, for which the
associated polynomial sequence [ pn] uniformly converges to f for every
f # C[a, b]. That is, does there exist a fixed triangular array of points for
which the Weierstrass theorem follows by interpolation?

For more than a century it was known that for some reasonable triangular
arrays, with more or less equally spaced points, there exist continuous
functions for which the associated polynomial sequence diverges, see e.g.
Me� ray [62] or the better known example from Runge [83]. Nonetheless
it was somewhat surprising when Faber [27] proved in 1914 that for every
triangular array of points there exists a continuous function for which the
associated polynomial sequence diverges. (For much more on this subject
see the book of Szabados and Ve� rtesi [91].) This result of Faber should be
compared with Bernstein's 1912�13 proof of the Weierstrass theorem.
Bernstein constructs a polynomial of degree n based on the values of the
function (defined on [0, 1]) at the equally spaced points [ j�n], j=0,
1, ..., n. These polynomials converge uniformly to the function, but they do
not interpolate the function at these points.

Based on this result of Faber, it was all the more surprising when Feje� r
proved in 1916 in [30] (see also [31]) that Weierstrass' theorem may be
obtained via interpolation. The difference was that Feje� r used Hermite
interpolation rather than Lagrange interpolation. Hermite interpolation is
the term applied to the generalizations of Lagrange interpolation which are
based not only on function values, but also on consecutive derivative
values. Feje� r considered a rather specific Hermite type interpolation
scheme. (He actually considered two schemes, but we will detail only one.)
This interpolation scheme is today called Hermite�Feje� r interpolation.

Let f # C[&1, 1] and xj=cos(2 j&1) ?�2n, j=1, ..., n, be the zeros of the
Chebyshev polynomial Tn of degree n (see Section 4). There exists a unique
polynomial Hn of degree at most 2n&1 which satisfies

Hn(xj)=f (xj), j=1, ..., n
(5.1)

H$n(xj)=0, j=1, ..., n.

The following is contained in [30, Theorem XI].

Hermite�Feje� r Interpolation Theorem. For every f # C[&1, 1] the
sequence of polynomials Hn , as defined above, converges uniformly to f on
[&1, 1].

Proof. For any given distinct [xj]n
j=1 , set

|(x)= `
n

j=1

(x&xj )
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and

li (x)=
|(x)

|$(xi)(x&xi)
. (5.2)

The li are (fundamental) polynomials of exact degree n&1 that satisfy

li (xj )=$ ij , i, j=1, ..., n.

For each i=1, ..., n, set

hi (x)=[1&2(x&xi) l$i (xi)](li (x))2.

It is readily verified from (5.2) (and L'Hôpital's rule) that

hi (x)=_1&
|"(xi)(x&x i)

|$(x i) & (li (x))2. (5.3)

Each hi is a polynomial of exact degree 2n&1, and

hi (xj)=$ ij , j=1, ..., n

h$i (xj)=0, j=1, ..., n.

Thus the polynomial of degree at most 2n&1

Hn(x)= :
n

i=1

f (xi) hi (x)

satisfies (5.1).
We now assume, as in the statement of the theorem, that xj=cos(2 j&1)

?�2n, j=1, ..., n. Then |(x)=aTn(x) for some known constant a. (| is
monic, while Tn is normalized to have norm one.) In this case we show
how we can further refine formula (5.3) for the hi . The polynomial |
satisfies the second order differential equation

(1&x2) |"(x)&x|$(x)+n2|(x)=0

(see e.g. Rivlin [78, p. 31]). At the points xi we have |(xi)=0 and therefore

(1&x2
i ) |"(xi)=x i|$(x i)

and

|"(xi)
|$(xi)

=
xi

(1&x2
i )

. (5.4)
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Furthermore it is easily verified from the formula Tn(x)=cos(n arc cos x)
that

|$(xi)=aT $n(x i)=
an(&1) i

- 1&x2
i

.

Thus from (5.2)

(li (x))2=_ |(x)
|$(xi)(x&xi)&

2

=
(1&x2

i )
(x&x i)

2

T 2
n(x)
n2 . (5.5)

Substituting (5.4) and (5.5) into (5.3) we obtain

hi (x)=
(1&xxi)
(x&xi)

2

T 2
n(x)
n2 .

Note that since |xi |<1 it follows that

hi (x)�0 (5.6)

for all x # [&1, 1]. Furthermore

:
n

i=1

hi (x)#1 (5.7)

since the right hand side is the unique polynomial of degree at most 2n&1
which assumes the value 1 and has derivative 0 at each xj , j=1, ..., n.

Finally, before proving the convergence result, we note that since |Tn(x)|
�1 and |1&xx i |�2 for all x # [&1, 1], we have the inequality

hi (x)�
2

n2(x&xi)
2 (5.8)

for all x # [&1, 1] and i=1, ..., n.
The remaining steps of the convergence proof are now similar to what

we have seen in previous proofs. Given =>0 there exists a $>0 such that
for all x, y # [&1, 1] satisfying |x& y|<$ we have | f (x)& f ( y)|<=. Now
from (5.7)

f (x)&Hn(x)= :
n

i=1

[ f (x)& f (x i)] hi (x).
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We divide the sum on the right hand side into

:
[i: |x&xi |<$]

[ f (x)& f (x i)] h i (x)+ :
[i: |x&xi | �$]

[ f (x)& f (x i)] h i (x).

Applying both (5.6) and (5.7) we have

} :
[i: |x&xi |<$]

[ f (x)& f (x i)] hi (x)}<= :
[i: |x&xi | <$]

hi (x)�= :
n

i=1

hi (x)==.

We estimate the second sum by an application of (5.8).

} :
[i: |x&xi | �$]

[ f (x)& f (xi)] hi (x) }�2 & f & _ :
[i: |x&xi |�$]

hi (x)&
�

4 & f &
n2 :

[i: |x&xi | �$]

1
(x&xi)

2

�
4 & f &

n2

n
$2=

4 & f &
n$2 .

Choosing n sufficiently large it follows that

| f (x)&Hn(x)|<2=

for all x # [&1, 1]. K

Carleman's Theorem. In 1927 T. Carleman (1892�1949), see [24],
proved a direct generalization of Weierstrass' original Theorem A (see
Section 3). This result would have undoubtedly pleased Weierstrass. It is
the following.

Carleman's Theorem. Let ' # C(R), '(x)>0 for all x. To each f # C(R)
there exists an entire function g for which

| f (x)& g(x)|<'(x)

for all x # R.

Proof. In what follows we assume z # C and x # R. Furthermore, let
:0>:1> } } } satisfy

0<:n< min
n�|x|�n+1

'(x)
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and

;n=:n+1&:n+2

n=0, 1, 2, ..., and ;&1=0.
We will construct a sequence of polynomials [ pn] in the following

manner. The polynomial p0 is chosen, by Weierstrass' theorem, to satisfy

| f (x)& p0(x)|<;0

for |x|�1. Now set

h1(z)= p0(z), |z|�1 and h1(x)= f (x), 3�2�|x|�2

and extend h1 to [x: 1<|x|<3�2] so that it is continuous on [x: 1�|x|�2]
and also satisfies

| f (x)&h1(x)|<;0

on [x: 1�|x|�3�2]. This is possible. Set

A1=[z: |z|�1] _ [x: 1�|x|�2].

By a theorem of Walsh [104, p. 47, Theorem 15] (a Runge type theorem)
the function h1 can be uniformly approximated on A1 by polynomials.
Thus there exists a polynomial p1 satisfying

|h1(z)& p1(z)|<;1

for all z # A1 .
The general form of the construction is the following. For n # N set

An=[z: |z|�n] _ [x: n�|x|�n+1].

Assume we have chosen the polynomial pn satisfying

| f (\(n+1))& pn(\(n+1))|<;n .

Set

hn+1(z)={ pn(z),
f (x),

|z|�n+1
n+3�2�|x|�n+2

and extend hn+1 to [x: n+1<|x|<n+3�2] so that it is continuous on
An+1 and also satisfies

| f (x)&hn+1(x)|<;n
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on [x: n+1�|x|�n+3�2]. This is possible. By the above-mentioned
theorem of Walsh, there exists a polynomial pn+1 satisfying

|hn+1(z)& pn+1(z)|<;n+1

for all z # An+1 (and thus our ``assumption'' also holds at \(n+2)).
Let

g(z)= lim
n � �

pn(z)= p0(z)+ :
�

k=0

[ pk+1(z)& pk+2(z)].

We claim that g is an entire function which satisfies the claim of the theorem.
The function g is entire since

| pn+1(z)& pn(z)|<;n+1

on [z: |z|�n+1], and ��
k=0 ;k<�.

To prove the approximation property note that on [x: n�|x|�n+1]
we have

| f (x)& pn(x)|�| f (x)&hn(x)|+|hn(x)& pn(x)|<;n&1+;n

(which also holds for n=0 since we have set ;&1=0). Furthermore, on
[x: n�|x|�n+1]

| g(x)& pn(x)|= } :
�

k=n

[ pk+1(z)& pk (z)] }< :
�

k=n

;k+1 .

Thus on [x: n�|x|�n+1] we have

| f (x)& g(x)|�| f (x)& pn(x)|+| pn(x)& g(x)|< :
�

k=n&1

;k .

Recalling that ;k=:k+1&:k+2 , k=0, 1, 2, ..., and ;&1=0, it follows that

:
�

k=n&1

;k�{:n ,
:1<:0 ,

n�0
n=0

and thus

| f (x)& g(x)|<'(x)

for all x # R. K

We have presented here a variation on Carleman's original proof,
although the basic structure of the proof is much the same. The major
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difference is that Carleman does not reference Walsh, but constructs the
desired [ pn]. The proof as given here may be found in Kaplan [46]. He
ascribes it to Marcel Brelot. This is essentially the same proof as appears
in Gaier [33], where numerous extensions are discussed. In addition, in
Carleman's original formulation ' was taken as a positive constant.
However from the method of proof it easily follows that the positive
constant can be replaced by any ' as above. Note that ' can tend to 0 as
x � \�.

H. Whitney, in his seminal paper [109] on the analytic extension of
differentiable functions, proves an extension of this result of Carleman to
open sets in Rn and also simultaneously approximates the function and any
finite set of derivatives. Narasimhan [67, p. 34] contains an elegant proof
along the lines of both Whitney's proof and Weierstrass' original proof.
Unfortunately Whitney's paper contains no reference to Carleman. As a
consequence there seem to have been two streams of papers which discuss
and generalize these results, each stream referencing one author but not the
other. Frih and Gauthier [32] have some interesting extensions to both
results.

Stone�Weierstrass theorem. In [88], written in 1937, M. H. Stone
(1903�1989) generalized Weierstrass' theorem proving a result which, as
stated in Buck [18, p. 4], represents one of the first and most striking exam-
ples of the success of the algebraic approach to analysis. There have since
been numerous modifications and extensions of the original theorem and
various proofs have been given. See, for example, Nachbin [66] and Prolla
[75], and references therein. Stone himself reworked relevant portions of
[88] in [89], which was reprinted in the more accessible Stone [90].
According to Stone, the proof in [89, 90], was much improved by Kakutani,
with the aid of suggestions made by Chevalley. (He is referring to the double
compactness argument given below.) The importance of the theorem and
the insight it provides into the Weierstrass theorems is such that we feel it
imperative that we present and prove a form of this theorem here. Our
proof will follow closely the essential ideas contained in [89, 90].

Theorem. Let X be a compact space and let C(X ) be the space of
continuous real-valued functions defined on X. Assume A is a subalgebra of
C(X ) which contains the constant function and separates points. Then A is
dense in C(X) in the uniform norm.

We recall that an algebra is a linear space on which multiplication
between elements has been suitably defined satisfying the usual commutative
and associative type postulates. Algebraic and trigonometric polynomials
in any finite number of variables are algebras. A set in C(X) separates
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points if for any distinct points x, y # C(X ) there exists a g in the set for
which g(x){ g( y).

Proof. First some preliminaries. From the Weierstrass theorem, or
more explicitly from Lebesgue's proof thereof and its variations as given in
Section 4, there exists a sequence of algebraic polynomials [ pn] which
uniformly approximates the function |t| on [&c, c], every c>0. As such,
if f is in A� , the closure of A in the uniform norm, then so is pn( f ) for each
n which implies that | f | is also in A� . Furthermore

max[ f (x), g(x)]=
f (x)+ g(x)+| f (x)& g(x)|

2

and

min[ f (x), g(x)]=
f (x)+ g(x)&| f (x)& g(x)|

2
.

It thus follows that if f, g # A� , then max[ f, g] and min[ f, g] are also in A� .
This of course extends to the maximum and minimum of any finite number
of functions.

Finally, let x, y be any distinct points in X, and :, ; # R. There exists a
g # A for which g(x){ g( y), and the constant function is also in A. Thus

h(w)=;+(:&;)
g(w)& g( y)
g(x)& g( y)

is in A and satisfies the interpolation conditions h(x)=: and h( y)=;.
We can now present a proof of this theorem. Given f # C(X ), =>0 and

x # X, for every y # X let hy # A satisfy hy(x)= f (x) and hy( y)= f ( y). Since
f and hy are continuous there exists a neighbourhood Vy of y for which
hy(w)� f (w)&= for all w # Vy . The � y # X Vy cover X. As X is a compact
metric space, it has a finite subcover, i.e., there are points y1 , ..., yn in X
such that

.
n

i=1

Vyi
=X.

Let g=max[hy1
, ..., hyn

]. Then g # A� and g(w)� f (w)&= for all w # X.
The above g depends upon x, so we shall now denote it by gx . It satisfies

gx(x)= f (x) and gx(w)� f (w)&= for all w # X. As f and gx are continuous
there exists a neighbourhood Ux of x for which gx(w)� f (w)+= for all
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w # Ux . Since �x # X Ux covers X, it has a finite subcover. Thus there exist
points x1 , ..., xm in X for which

.
m

i=1

Uxi
=X.

Let

F=min[gx1
, ..., gxm

].

Then F # A� and

f (w)&=�F(w)� f (w)+=

for all w # X. Thus

& f&F&�=.

This implies that f # A� . K

Bohman�Korovkin theorem. As we noted in Section 4, many of the
proofs contained therein are based on sequences of singular integrals, and
in fact on positive singular integrals. In his famous treatise [55] of 1909,
Lebesgue considered the subject of singular integrals. This paper was
largely motivated by the various above-mentioned proofs. As Lebesgue
states in [54] in reference to the methods of proof of Weierstrass, Picard,
Feje� r and Landau: ... the study of these diverse integrals is done by the same
process and evidently depends on those properties relative to singular
integrals of positive functions.

The paper [55] is lengthy and contains many diverse results on integrals,
different forms of convergence of sequences of singular integrals, and upper
and lower bounds on the orders of approximation by various approximation
processes. With respect to convergence of sequences of singular integrals, it
is perhaps easiest to formulate some of these main concepts in the periodic
case.

Theorem. Assume that for each n # N we have Kn # C� [&?, ?], Kn( y)�0
for all y # [&?, ?], and

|
?

&?
Kn( y) dy=1.
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Further assume that for every $>0

lim
n � � |

$<| y|�?
Kn( y) dy=0.

For each f # C� [&?, ?] set

In( f ; x)=|
?

&?
f ( y) Kn(x& y) dy.

Then

lim
n � �

In( f; x)= f (x)

and the convergence is uniform on [&?, ?].

The proof of this result is elementary. We have essentially proven it
repeatedly in this and the previous section.

If Kn is a trigonometric polynomial, as in the proofs of Feje� r and de la
Valle� e Poussin, then In is a trigonometric polynomial and this immediately
implies Weierstrass' theorem. The singular integral of Jackson (contained
in his thesis [42] and also in the more accessible [44])

Jn( f; x)=|
?

&?
f ( y) jn(x& y) dy,

where

jn( y)=an _ sin(ny�2)
n sin( y�2)&

4

with an chosen so that jn integrates to 1, is another example thereof. If
In( f; x) is either a polynomial or suitably analytic, in which case it can be
replaced by a truncated power series approximant, then we also obtain the
Weierstrass theorem. The proofs of Weierstrass and Landau fall within
these categories. This framework and these results can also be generalized
to include Bernstein's proof and the proof via Hermite�Feje� r interpolation.

In the above we sought conditions verifying that a sequence of singular
integrals appropriately approaches the identity. Positive singular integrals
give rise to positive linear operators. It so happens that there are easily
checked properties guaranteeing the convergence of a sequence of positive
linear operators to the identity operator. The major result in this context
is the following which can be applied to simplify many of the methods of
proof of the previous section.
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Bohman�Korovkin Theorem. Let [Ln] be a sequence of positive linear
operators mapping C[a, b] into itself. Assume that

lim
n � �

Ln(x i )=xi, i=0, 1, 2,

and the convergence is uniform on [a, b]. Then

lim
n � �

(Ln f )(x)= f (x)

uniformly on [a, b] for every f # C[a, b].

Proof. Let f # C[a, b]. As f is uniformly continuous, given =>0 there
exists a $>0 such that if |x1&x2 |<$, then | f (x1)& f (x2)|<=.

For each y # [a, b], set

pu(x)= f ( y)+=+
2 & f & (x& y)2

$2

and

pl(x)= f ( y)&=&
2 & f & (x& y)2

$2 .

Since

| f (x)& f ( y)|<=

for |x& y|<$, and

| f (x)& f ( y)|<
2 & f & (x& y)2

$2

for |x& y|>$, it is readily verified that

pl(x)� f (x)�pu(x)

for all x # [a, b].
Since the Ln are positive linear operators, this implies that

(Ln pl)(x)�(Ln f )(x)�(Ln pu)(x) (5.9)

for all x # [a, b], and in particular for x= y.
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For the given fixed f, = and $ the pu and pl are quadratic polynomials
which depend upon y. Explicitly

pu(x)=\ f ( y)+=+
2 & f & y2

$2 +&\4 & f & y
$2 + x+\2 & f &

$2 + x2.

Since the coefficients are bounded independently of y # [a, b], and

lim
n � �

Ln(x i )=xi, i=0, 1, 2,

uniformly in [a, b], it follows that there exists an N such that for all n�N,
and every choice of y # [a, b]

|(Ln pu)(x)& pu(x)|<=

and similarly

|(Ln pl)(x)& pl(x)|<=

for all x # [a, b]. That is, Ln pu and Ln pl converge uniformly in both x
and y to pu and pl , respectively. Setting x= y we obtain

(Ln pu)( y)<pu( y)+== f ( y)+2=

and

(Ln pl)( y)>pl( y)&== f ( y)&2=.

Thus given =>0 there exists an N such that for all n�N and every
y # [a, b] we have from (5.9)

f ( y)&2=<(Ln f )( y)< f ( y)+2=.

This proves the theorem. K

H. Bohman (1920�1996) was a Swedish actuary and statistician. In [9],
published in 1952, he proved the above mentioned result but only for
positive linear operators of the form

(Ln f )(x)= :
n

i=0

f (!i, n) �i, n(x),

where the �i, n are non-negative functions, and the points !i, n are in [a, b],
i=0, 1, ..., n. His proof, and the main idea of his approach, was a generaliza-
tion of Bernstein's proof of the Weierstrass theorem (see Section 4).
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P. P. Korovkin (1913�1985) one year later proved the same theorem for
integral type operators. Korovkin's original proof, as found in [47], is
based on positive singular integrals (a� la Lebesgue). Korovkin was
probably unaware of Bohman's result. Korovkin subsequently much
extended his theory, major portions of which can be found in [48]. The
proof we have presented here is taken from [48].

Kuhn's proof. There are many elegant proofs of Weierstrass' theorem.
For those comfortable with either power series or Fourier series or singular
integrals, then the previous sections contain many simple proofs. But
perhaps the most elementary proof (of which we are aware) is Kuhn [50].
Kuhn's proof uses one basic inequality, namely Bernoulli's inequality

(1+h)n�1+nh

which is valid for h�&1 and n # N.
We present Kuhn's proof except that we save a step by recalling from

Section 4 that we need only approximate continuous polygonal lines which
we can write as

g(x)= g1(x)+ :
m&1

i=1

[ gi+1(x)& gi (x)] h(x&xi ),

where the 0=x0<x1< } } } <xm=1 are the abscissae of the polygonal line
g, each gi is linear, gi+1& g i vanishes at xi , and

h(x)={1,
0,

x�0
x<0

.

This form was used in the proofs of Runge�Phragme� n, Mittag-Leffler and
Lebesgue. In fact, in the first two of these proofs it was noted that it suffices
to find a sequence of polynomials bounded on [&1, 1] and approximating
h uniformly on [&1, &$] _ [$, 1], for any given $>0.

Kuhn simply writes down such a sequence of polynomials. They may be
given as

pn(x)=_1&\1&x
2 +

n

&
2n

.

(Note that the polynomials [x[2pn(x)&1]] uniformly converge to |x| on
[&1, 1]. See Lebesgue's proof as given in Section 4.)

It is more convenient to consider the simpler

qn(x)=(1&xn)2 n
,
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which is just a shift and rescale of pn . On [0, 1] the qn are decreasing and
satisfy qn(0)=1, qn(1)=0. The requisite facts concerning the pn therefore
reduce to showing

lim
n � �

qn(x)={1,
0,

0�x<1�2
1�2<x�1

.

Let x # [0, 1�2). Then from Bernoulli's inequality

1�qn(x)=(1&xn)2n
�1&(2x)n.

Since 0�2x<1, we have

lim
n � �

qn(x)=1.

Let x # (1�2, 1). Then using Bernoulli's inequality we obtain

1
qn(x)

=
1

(1&xn)2 n=\1+
xn

1&xn+
2n

�1+
(2x)n

1&xn>(2x)n

and thus

0<qn(x)<
1

(2x)n .

As 2x>1, it follows that

lim
n � �

qn(x)=0.

The monotonicity of the qn implies that this approximation is appropriately
uniform. This ends the proof.

Kuhn's proof motivated Brosowski and Deutsch [17] and subsequently
Ransford [76], to provide elementary proofs of the Stone�Weierstrass
Theorem.
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